The Importance of Recycling Energy, Part 1: The answer to feeding a growing world population

What you are about to read is a different perspective than what you normally hear about our use of fossil fuels. We have within our reach the ability to solve many of the environmental problems that we face today with the use of “non-renewable” energy sources — crude oil, natural gas, and coal. We get the impression from many scientists that our use of fossil fuels that we are removing from the earth is polluting our environment with unnatural toxins that should not be there and that we are creating a big environmental problem with greenhouse gases. But their field of view is too narrow and pessimistic. We have the opportunity of recycling fossil fuel energy back to it original form. In the process, not only can we solve many of these environmental problems, but we can significantly increase food production to feed a growing world population using organic methods. Chemical farming and GMO’s are not the answer for increasing food production to feed the world.

To see the solution, it is necessary to see the bigger picture of what fossil fuel energy really is and how it can be recycled. Fossil fuels are formed from the remains of dead plants and animals that were buried many years ago. In Pennsylvania, layers of coal can range from a few inches to 10 or 12 feet thick. To make coal or oil, plant and animal matter is highly compressed. Now try to imagine how many plants it would take to make a layer of coal that was only one foot thick.  What those layers of coal and oil tell us is that many years ago the soil was highly productive and produced vast amounts of vegetation that in some locations was likely much greater than anything we have seen in modern times.

In physics, The Law of Conservation of Energy states that energy cannot be created or destroyed, but it can change form. Energy is said to be conserved over time. In the case of fossil fuels, when they are burned the energy is not destroyed but rather changes form. A significant portion becomes carbon dioxide. But before we go further, we need to back up and look at where fossil fuels came from in the first place and look at the carbon cycle. First,  in very ancient times there was very fertile topsoil that was rich in carbon. That very fertile soil produced vast amounts of plant matter. The plant matter was buried and over many years was converted into fossil fuels. Today, fossil fuels are being removed from the earth and burned and vast amounts of carbon dioxide are being put into the air. What we need to do is to capture that ancient topsoil that is now floating in the air as carbon dioxide and put it back into our topsoil. If we can accomplish that we have the potential to significantly increase food production.

The bottom line is: gasoline came from topsoil, we burned it in our car and put the “topsoil” in the air. It is interesting that many of the oil rich countries, such as Iraq and Saudi Arabia, are largely desert countries. Their topsoil is buried way below the surface in the form of oil. (It is interesting to note that the Garden of Eden, with its lush vegetation, would have been in their general area.) They are pumping their topsoil out of the ground as oil and selling their topsoil to us to burn in our cars. We are burning their topsoil and using the energy for transportation. In the process we have put their topsoil into the air where it is polluting the environment. Our responsibility and opportunity now is to recycle the topsoil out of the air and put it back in the topsoil where it belongs.

Why it is important to recycle energy back into our topsoil
Why is it important that we recycle carbon out of the atmosphere and put it in the soil? We have a great opportunity to restore soil productivity back to the way it was right before fossil fuels were formed. The carbon dioxide in the air is an important resource that we need to utilize.

The main difference between topsoil and subsoil is the carbon content in the topsoil. The carbon content is usually referred  to as organic matter. By increasing the carbon content of our soils we can increase the depth of the topsoil and make the soil much more productive. Dr. Carey Reams used to say that if he knew how deep the top soil was, he could tell you what the production would be. Research at Michigan State University indicates that a 1 percent increase in organic matter offers a 12 percent increase in crop production potential. (http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1083169.pdf)

Adding carbon to the soil helps make the soil more drought proof. Carbon is like a sponge and can hold about four times its weight in water. Therefore increasing the carbon content of the soil enables the soil to hold water for an extended time after it rains and makes more water available to the plants. High carbon soil can also absorb moisture from the air during times of high humidity, increasing the water available to the plants even though it doesn’t rain.

Carbon in the topsoil makes it more porous so that when it rains the water soaks into the soil and does not run off as quickly. That is important for keeping the water where the plants can use it, but it also is very important in reducing topsoil erosion and flooding. This summer here on the farm we had an inch of rain in less than a half hour. I went to a place where we have often had water running off the pasture in the past. This time there was no run off. The soil had absorbed the entire inch of rain. That was a satisfying result of the work we have done in increasing the soil carbon content of our soils.

Carbon also provides a “hotel” for the microbes and bacteria in the soil. Those microbes and bacteria in the soil are important for making nutrients and minerals available to the plants and converting decayed plant matter into soil carbon.

It is important that we complete the carbon cycle and put the “topsoil” that we burn in our cars back into the soil where it belongs. The real answer to feeding a growing world is in organic farming that sequesters carbon and builds topsoil.

To be continued.